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Abstract  

A new approach for investigating the classical dynamics of the relativistic string model with 
rigidity is proposed. It is based on the embedding of the string world surface into a space 
of constant curvature. It is shown that the rigid string in flat space-time is described by the 
Euler-Lagrange equation for the Willmore functional in a space-time of constant curvature K = 
- 7 / ( 2 a ) ,  where 7 and a are constants in front of the Nambu-Goto term and the curvature 
term in the ngid string action, respectively. For simplicity the Euclidean version of the rigid 
string in three-dimensional space-time is considered. The WiUmore functional (the action for the 
"Willmore string") is obtained by dropping the Nambu-Goto term in the Polyakov-Kleinert action 
for the rigid string. Such a "reduction" of the rigid string model would be useful, for example, 
by applying some results about the Nambu-Goto string dynamics in the de Sitter universe to the 
rigid string model in the Minkowski space-time. It also allows us to use numerous mathematical 
results about Willmore surfaces in the context of the physical problem. 
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1. I n t r o d u c t i o n  

The Polyakov-Kle iner t  (P-K)  rigid string model [ 1,2] has recently widely been 

considered by researchers working in fields ranging from particle physics [3] and 
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cosmology [4,5] to condensed matter [6] and biophysics [7]. For a recent review, see, 
e.g., Refs. [ 3,8]. 

In spite of the above interest of various groups of researchers in the rigid string 
model, very little progress has been achieved to date in our theoretical understanding 
of this model. Indeed, unlike the Nambu-Goto (N-G) model [9], which has been 
thoroughly studied both classically and quantum mechanically, the rigid string model is 
not well understood even at the classical level. If the traditional methods developed for 
the N-G model are applied to rigid string, then, at the classical level, the rigid string 
equations of motion are nonlinear in any gauge. The above nonlinearity precludes the 
use of conventional quantization methods developed for the N-G model. Accordingly, 
for the rigid string model there is no analog of the Virasoro algebra which allows one 
to determine the critical dimension of this model. 

In view of the situation just described, most of our knowledge about the rigid string is 
based on rather inconclusive numerical simulation results, which employ the discretized 
lattice version of the P-K string [ 10]. These simulations typically involve only a study 
of the Euclidean version of the P-K rigid string. In the case of Minkowski space-time 
this model has additional ghost states [2,11]. Because of these states, the rigid string 
model has been severely criticized recently [ 12]. The authors of Ref. [ 12] had come 
to the conclusion that "either fourth derivative kinetic term most be quantized with an 
indefinite norm.., or with energy unbound from below." 

The rigid string action is given by [ 1,2] 

A =  y f f  as + a f f  H2as, (1.1) 

where a and y are some constants. In ( 1.1 ), integration takes place over the string world 
surface S which has extrinsic mean curvature H. For simplicity we confine ourselves 
to considering the three-dimensional space-time and to the Euclidean version of this 
model. In order to get rid of the boundary conditions we shall treat closed string world 
surfaces, which are encountered, for example, in string vacuum functional. 

The equations of motion for action (1.1) written in terms of the string coordinates 
are very complicated. They stand for a system of nonlinear partial differential equations 
of the fourth order [ 13]. Except for one model example [ 14], nothing is known about 
solutions of such a system of equations. However, varying the functional (1.1) one can 
arrive at quite simple equations relating basic geometrical invariants of the string world 
surface, its Gauss curvature K and mean curvature H. We shall be working mainly with 
equations of such type. 

The main result of our work can be formulated as follows. We are going to demonstrate 
that the effects of the N-G term in the total action A (the first term in Eq. (1.1)) could 
be accounted for by considering the truncated action which contains only the second 
term in (1.1) provided that this term is considered not in flat but in curved space- 
time. Thus truncated action is known in the literature as the Willmore functional [ 15] 
and, thence, we shall denote the string model, based on such a truncated action, as the 
Willmore string. Reduction of the variational problem for the rigid string action A to 
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that for the Willmore string is advantageous for a number of reasons. 

First, because the action (1.1) is a two dimensional extension of the action used 

for particles with curvature-dependent action [ 16,17], it is logically natural to search 
for methods which extend those developed for particles to that used for strings. In 
Ref. [18] the non-relativistic quantum mechanics of point-like particles is formulated 
on the surface of the three-sphere S 3 embedded in R 4. Such a reformulation leads to 

the emergence of spin for an initially spinless particle. Because the statistical mechanics 
of spinless particles is the same as fully flexible polymers, the presence of spin for 

such particles leads to the effective rigidification of initially flexible polymers [ 19]. 
Alternatively, such rigidification could be achieved if the above "particle" moves in the 
presence of an (in general) (non)abelian monopole gauge field [20]. In this case the 

rigidification mechanism lies in the replacement of ordinary derivatives in the "flexible 

particle" Hamiltonian by covariant ones causing our particle to move in the effective 
gauge (gravity) field. The present work can be viewed as an extension of the above 
ideas to the case of two dimensional objects, e.g., rigid strings. 

Second, in modern geometry a considerable amount of results related to Willmore 

functionals have been accumulated, see, e.g., Refs. [21,22], so that our understanding 
of rigid strings (at least at the classical level), in view of the results of our work, 

will depend to a large extent on appropriate interpretation and utilization of the already 

accumulated knowledge. 

The layout of the paper is as follows. In Section 2 we provide auxiliary facts from 
classical differential geometry of surfaces in order to arrive at Willmore's "equation 

of motion" connecting the Gaussian curvature K with the mean curvature H in a fiat 

embedding space-time. In Section 3 we extend the above results to the case when 
the embedding space is a space of constant curvature. In the context of quantum field 

theories the problem of embedding of the corresponding field-theoretic model into a 

space of constant negative curvature was recently considered in Ref. [23] in connection 
with improved infrared regularization of QCD. In our case we study the embedding 

with a different purpose. By doing so we are hoping to apply some results about the 

Nambu-Goto string dynamics in the de Sitter universe to the rigid string model in the 

Minkowski space-time. 
Finally, in Section 4 (Conclusion) we provide a brief summary and discussion of 

possible future applications of the obtained results. In the Appendix a simpler one- 
dimensional version of our problem is considered. Instead of surfaces in the action 
( 1.1 ) we are dealing here with curves. 

2. Normal variations of the surfaces 

For completeness we give here the basic equations from classical differential geometry 
of surfaces that will be required in the following [24]. 

Let xU(u l, u2),/x = 1, 2, 3 be a parametric representation of the surface M in the 

three dimensional Euclidean space E 3 and n u the unit normal to the surface. The intrinsic 
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differential geometry of the surface is defined by the induced metric or the first quadratic 

differential form of the surface, 

(2.1) gi, j(U 1, U 2) = X i~'X 0~', X ~.,, = aX~'(U 1 , UZ)/OU i, i, j = 1, 2. 

The central point of surface theory is the derivation equations of Gauss 

x~. ,0 = F k  x/z ,k + bij n~ 

and Weingarten 

n ~. = _ b ; j g j k < ~ .  
, l  

(2.2) 

( 2 . 3 )  

Here F k are the Christoffel symbols for the metric go [24], g"J is an inverse matrix to 
gij, bij are the coefficients of the second quadratic form of the surface, which determines 

its external curvature ( bij = bj i) .  
Eqs. (2.2) and (2.3) describe the motion of the basis {x,~ x,~, n ~} along the surface. 

The compatibility conditions of these linear equations are given by the Gauss equation 

Rijkl = bikbjl - bilbjk (2.4) 

and by the Codazzi equations 

bij.,k -- bik;j = 0 ,  i ,  j ,  k = 1, 2.  ( 2 . 5 )  

The semicolon means covariant differentiation with respect to the metric tensor go in 
(2.1) and Rijkl is the Riemann curvature tensor [24]. 

When Eqs. (2.4) and (2.5) are satisfied by given tensors go and bij then the derivation 
equations (2.2) and (2.3) can be integrated and their corresponding solution x ~ ( u  1 , u 2) 

determines the surface up to its motion in E 3 as a whole. 
The important geometrical invariants of the surface are its Gaussian curvature 

K = - R / 2 ,  R = gi lgjkei jk l  (2.6) 

and its mean curvature 

"" 1 i (2.7) H = ½ b o g  u = ~ b i . 

For physical applications dealing with closed surfaces it is sufficient to consider 
n o r m a l  var ia t ions  of the surface, which are defined as follows. For a given surface M 
with a position vector x~ ' (u  I , u 2) we form the surface 37/parallel to M putting 

Y#' = x ~ + t f n ~', - e < t < e ,  (2.8) 

where f ( u  l, u 2) is a sufficiently smooth function given on M. We denote by 6 the 
operator O/Ot It---o. Thus t~x~' = f n  ~'. For simplicity, we shall omit the bar at the argument 
of 6. 

From the definition (2.8) we obtain 
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6 x~ = f ,i nu + f n~, (2.9) 

8 x ~ j = f ,  ijn jz + f ,  inU, j + f,jnU, i + fn,~j. (2.10) 

The variation of the metric tensor (2.1) is given by 

6gij = 6x~x~  + xU, itSx~ = f(n~xUj + nU, jxU, i ). (2.11) 

By making use of the Weingarten derivation equation (2.3) the last equation can be 
rewritten as 

6gij = - 2  fbi) .  (2.12) 

By varying the definition gijg jk = t~ k we have ~gijg jk d- gijBg jk = O. Whence, 

~glk = _gliCk t~gij = 2 fblk. (2.13) 

Denoting, as usual, by g a determinant of the metric tensor, g = det(gij), we can write 

6 V ~  = v ~  6x~ = v/ggimx~mn~f = -2v / 'gH f .  (2.14) 

From (2.2)  it follows that 

bij = n~x~j. (2.15) 

Hence 

t~bij =6nUx~j + n~'ax~j 

=F~t3n~x~ + bijrn u n u + nUrxg, i j .  (2.16) 

By varying the equalities following from the definition of the normal n u, 

nP" n p" = 1, nlZ x p" ,i = 0 ,  (2.17)  

we get 

6nUn u =0,  (2.18)  

6n~'x~ = - n U r x ~  = - f , i .  (2.19) 

In addition, one can write 

nU nU",,j = -n~',t n,jl~ = --bik bjl gkl. (2.20) 

Finally the variation of the second quadratic form is given by 

abij = f ;ij -- f bik bjtg kt. (2.21) 

Now we can calculate the variation of H2: 
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6H 2 

where d 

equation 

R i k i k i k = bkb i - bib k = bkb i - 4 H  2. 

Thus the variation ~H 2 acquires the final form 

~3H z = H [ A f  + f ( R  + 4 H 2 ) ] .  
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= H 8 ( bij gij) = H gij 6bij + H bij 6g ij 

= H (A T + fb~b~),  (2.22) 

is the Laplace-Beltrami operator given on the surface M. From the Gauss 

(2 .4 )  it follows that 

(2.23) 

(2.24) 

Now we can derive the Euler-Lagrange equation following from the vanishing of the 

normal variation of the rigid string action ( 1.1 ), 

8A = 6 f f  (y  + cell 2) dS = 0, dS = v/'gdu l du 2. 

By making use of Eqs. (2.14) and (2.24) we obtain 

~A = l i d S  { [ - 2 y H  + a ( 2 H  3 + H R ) ]  f + ozHAf}  = 0. (2.25) 

On the closed surfaces the Laplace-Beltrami operator A is a self-adjoint operator [25] 

f dS ~pAf = f dS f&p; 

therefore the variation 6A in (2.25) can be rewritten as follows: 

6A = f d S [ - 2 y H +  a ( A H +  2H 3 + H R ) ] f  = 0. 

Due to the arbitrariness of the function f ( u  1, u 2) we arrive at the equation of motion 

- 2 T H  + ot (AH + 2H 3 + RH) = 0. (2.26) 

We have given here a quite detailed derivation of Eq. (2.26), which is rather well 
known in the literature [ 15,26] in the case of a Euclidean ambient space E 3. We shall 

use the methods, just described, in the next section for deriving the equation on the 

geometrical invariants H and R when the string world surface is placed in a space-time 
of a constant curvature S 3. 

3. W i l l m o r e  surfaces  in a space of  a constant  curvature 

Here we show that the equation of motion (2.26) can be derived by considering the 
Willmore surfaces in a space of a constant curvature S 3. The Willmore surfaces are 
extremals of the Willmore functional 

W = f f d S H  z. (3.1) 
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By making use of the Weierstra8 coordinates z ~ , a  = 1 ..... 4 [24,27] the three- 
dimensional sphere S 3 with radius a can be represented as a hypersurface in the four 
dimensional Euclidean space E 4 

4 

Z za za = a2" (3.2) 
ot=l 

Let z'~(u I, u2), a = 1, 2, 3, 4 be a parametric representation of the surface M 

embedded into S 3 in terms of the WeierstraB coordinates obeying (3.2). The natural 
unit normal to this surface in E 4 is z " ( u  I , u 2) and let n" be the second unit normal to 

this surface, 

4 4 4 

Z n ' ~ n ' ~ =  1, Z n ' ~ z ' ~  = 0 ,  Z n ' ~ z , ~  =0. (3.3) 
a = l  vt=l a = l  

The important advantage of the WeierstraB coordinates in the problem under consid- 
eration is the following. The basic equations for the surface embedded into S 3 are very 

simple, they are almost the same as in the Euclidean ambient space. For the metric 
tensor on M we have now 

4 4 

- -  z:  z7 : - Z z5  z ° (3.4) 
ot=l ct=l 

The derivation equations (2.2) and (2.3) become [24] 

Z,~j = F~ Z,ak + bij n '~ - ~2 z a' (3.5) 

n~ b "Jk z a ,t = -  ij2~ ,k" (3.6) 

The Gauss equation (2.4) now reads 

1 
Rijkl = bikbjl - bilbjk + -~ (gikgj! -- gilgjk). (3.7) 

The Codazzi equations (2.5) keep their form. 
The normal variation in terms of the WeierstraB coordinates is defined as follows: 

ga = Za + t f na, - - e < t < e ,  

6Z ~ = f n a, 
vt a not ~ z i =  f ,  in + f ,i, 

o t  

6 z,i~j = f , ij n '~ + f , in,~ + f ,jn,~i + f n.i j. (3.8) 

By making use of (3.2) and (3.3) one can easily convince oneself that such a variation 
does not take one out of  S 3. 

For the variation of the metric tensor (3.4) we have obviously the same equations 
(2 .12)-(2.14) .  From (3.5) it follows that the coefficients of the second fundamental 

form bij are defined by 
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4 
b;j = 

a--I 

Therefore, 

t~ bi t  = 6n '~ z,~j + n '~ 8z,~j 
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(3.9) 

f F k a gij ='~n ~' ~ ijZ,k + bun ~ - - j  z ~) + n"&,~. (3.10) 

For simplicity we omit here and in the following the summation sign with respect to 

repeated indices. 
From (3.2), (3.3) and (3.8) it follows that 

6n'~n'~=O, n~.n '~ = O, 8n'~z a = -n '~6z  '~ = - f ,  

8n z , i - - n  8 z i  = - f , i ,  

n ~ S z ~ j =  f ,  ij + fnan,'~j = f ,  ij - f n ~ n ~ .  (3.11) 

Now Eq. (3.10) becomes 

8bij f ,  ij k gij f a ,~ = -- F i j f ,  k + -- f n i n , j .  (3.12) a 2 . ,  

With allowance of (3.6) we obtain 

go a a 
8b i j=  f; i j  + - ~  f - f b~ib~ Z,kZ,l 

{ gij _ bkibjk ) (3.13) = f; i j  + f \ a 2  

By making use of the Gauss equation (3.7) we deduce now instead of (2.23) 

R = b~bki - 4 H  2 - 2 / a  2. (3.14) 

Whence 

6 H  2 = H [ d f  + f (R  + 4H 2 + 4/a2)] . (3.15) 

Taking into account that 

8 d S  = - 2 H  f d S  (3.16) 

we can write 

= ffas Jan + 2H 3 + n (R + 4/a2) ] f .  (3.17) 8 W  

Therefore the equation of motion for the Willmore string in S 3 is 

A H  d- 2H 3 q- H (R q- 4 / a  2) = 0.  (3.18) 

Thus it has the same form as (2.26) if we put 

y / o t  = - 2 / a  2. (3.19) 
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This result is in a complete agreement with an analogous relation in the one-dimensional 

version of the problem under consideration (see eq. (A.5) in the Appendix and take 

into account that the sectional curvature G in the case of the sphere (3.2) is equal to 
l /a2) .  

We would like to note here the following. In spite of the fact that the Willmore 

surfaces in spaces with curvature have been considered in a number of mathematical 
papers [28-30] nevertheless a simple derivation of eq. (3.18) is given here actually for 
the first time. In Ref. [29] a more general functional as compared with (3.1) has been 

considered. For closed surfaces it reads 

w, = f f ( H2 + x)dS, (3.20) 

where k is the constant sectional curvature of the ambient space. Taking into account 

that the subtraction from W] of the functional 

- e l f  as (3.21) 

results in the additional term in the Euler-Lagrange equation +2/~  H one obtains from 

Eq. (14) of Ref. [29] our result (3.18). At the same time, the final Eqs. (5.43) and 

(5.46) in Ref. [30] cannot be compared directly with our Eq. (3.18). In order to do 
this they should be combined with the Gauss equation. 

The result obtained here (Eq. (3.18) ) can be generalized directly in the following two 
ways. First, if we consider the Willmore surfaces not in S 3 but in a three dimensional 

manifold of constant negative curvature (the pseudosphere with imaginary radius ia) 

then Eq. (3.18) becomes 

zlH + 2H 3 + H (R - 4 / a  2) = 0. (3.22) 

Instead of (3.19) we have in this case 

y / a  = 2 / a  2. (3.23) 

Secondly, we can generalize our result to d-dimensional hypersurfaces in S a+l deter- 

mined by a functional 

W2 = f f  HmdS,  H = -~gJbql ~. , i , j  = 1,2 . . . . .  d, m > O. (3.24) 

In this case Eq. (3.18) becomes 

AH " - l  + d 2 1 - H m+t + H m-I R + ~-~ = 0. (3.25) 

When the Willmore d-dimensional surface is embedded into the sphere S a+'+l with 
n > 1 then one arrives at the n equations relating the internal and external characteristics 
of this surface in complete analogy with the one-dimensional case (see Appendix). 
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4. Conclusion 

Recently the string model based only on the second term in Eq. (1.1) has been 

considered in Ref. [31]. It was called as a spontaneous string alluding to the fact 

that in this case the Nambu-Goto term with nonzero string tension can be generated 

spontaneously due to the quantum fluctuations. We have proposed here another classical 

scenario for this situation. 

As a special solution to Eq. (3.18) we can consider the minimal surfaces in S 3 with 

H = 0. There are some new results about these solutions obtained under consideration 

of the usual Nambu-Goto string in a space-time of constant curvature [21,22,27,32]. 

In particular, the authors of Ref. [32] arrive at the conclusion that the dynamics of 

the Nambu-Goto string in the de Sitter space-time should be unstable. This instability 

turns out to be a direct consequence of the unboundedness of the Hamiltonian of the 

sinh-Gordon equation that describes minimal surfaces in the three-dimensional de Sitter 

universe [27]. The relationship between the rigid string in fiat space-time and the 

Willmore string in S 3 enables us to argue that the same instability should take place 

in the rigid string model in fiat space-time. In mathematics another relation between 
minimal surfaces in S 3 and the Willmore surfaces in R 3 is known [ 15,21]. Applying a 

stereographic projection to minimal surfaces in S 3 one obtains Willmore surfaces in R 3. 

Whence we can conclude that the Willmore string in R 3 is unstable also. 

And the final note concerns a modified version of the Willmore functional in S 3. 

From the physical point of view it is desirable to preserve the conformal invariance of 

this functional in the case of ambient space with a nonzero curvature too. To this end 

one has to use a modified form of it given in (3.20). 

Appendix A 

We consider here simpler version of our problem, i.e. a one dimensional version of 

it. Let us introduce two functionals defined on the curves x ~ (s): 

Fl =m f ds + ,~ f k2ds, (A.1) 

F2 = / k2 ds, (A.2) 

where k is the curvature of the curve, we shall consider the first functional in the 
Euclidean space E" and the second one in the n-dimensional manifold of constant 

sectional curvature G. When n -- 2 it has been shown in Ref. [33] that the Euler- 
Lagrange equations are identical for these two problems. This result can be generalized 

easily to arbitrary n. By making use of the results of Refs. [34] we can write the 
corresponding equations of motions. In the first case we have 
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2kss + k 3 - 2kr 2 -  ( m / a )  k = 0 ,  

k2r  = const. ,  

ki = 0, i ~ 1, 2. ( A . 3 )  

Here  the  subsc r ip t  s m e a n s  d i f f e ren t i a t ion  wi th  respec t  to the  cu rve  length ,  r is the  

to r s ion  o f  the  cu rve  and  ki, i = 3 , 4  . . . . .  d - 1 are the  h i g h e r  curva tu res  o f  the  curve.  

For  the  func t iona l  F2 the  E u l e r - L a g r a n g e  equa t i ons  read  

2 k~.~ + k 3 - 2 k r  2 + 2 k G  = 0, 

k2r = const. ,  

ki = 0, i - 7 ' 1 , 2 .  (A .4)  

Thus we get identical  systems if  we put  

m / a  = - 2G. (A.5)  

References 

[ 1 ] A. Polyakov, Fine structure of strings, Nucl. Phys. B 286 (1986) 406-412. 
121 H. Kleinert, The membrane properties of condensing strings, Phys. Lett. B 174 (1986) 335-338. 
[31 G. Germ~in, Some developments in Polyakov-Kleinert string with extrinsic curvature stiffness, Mod. 

Phys. Lett. A 20 (1991) 1815-1823. 
[41 R. Gregory, Effective action for a cosmic string, Phys. Lett. B 206 (1988) 199-204. 
[ 5 ] K. Maeda and N. Turok, Finite-width corrections to the Nambu action for the Nielsen-Olesen string, 

Phys. Lett. B 202 (1988) 376-380. 
16 ] J. Keller and J. Merchant, Flexural rigidity of a liquid surface, J. Stat. Phys. 63 ( 1991 ) 1039-1051. 
171 J. Jenkins, Static equilibrium configurations of a model red blood cell, J. Math. Biology 4 (1977) 

149-169. 
[ 8 ] X. Zhang and O-Y. Zhong-Can, Helfrich theory of biomembranes, Mod. Phys. Lett. B 6 (1992) 917-933. 
[9] B.M. Barbashov and V.V. Nesterenko, Introduction to the Relativistic String Theory (World Scientific, 

Singapore, 1990). 
110] C.F. Baillie and D.A. Johnson, Crossover between weakly and strongly selfavoiding random surfaces, 

Phys. Lett. B 295 (1992) 249-254; Effective model for crumpling in two dimensions, Phys. Rev. D 46 
(1992) 4761-4764. 

I 11 ] V.V. Nesterenko and Nguyen Suan Han, The Hamiltonian formalism in the model of the relativistic 
string with rigidity, Int. J. Mod. Phys. A 3 (1988) 2315-2329. 

1121 J. Polchinski and Z. Yang, High temperature partition function for the rigid string, Phys. Rev. D 46 
(1992) 3667-3669. 

113] H. ArodZ, A. Sitarz and P. W~grzyn, Comments on equations of motion, boundary conditions and 
energy-momentum for a classical rigid string, Acta Phys. Polonica B 22 (1991) 495. 

[ 14] T.L. Curtright, G.I. Ghandour and C.K. Zachos, Classical dynamics of strings with rigidity, Phys. Rev. 
D 34 (1986) 3811-3823. 

[ 15] T.J. Willmore, Total Curvature in Riemannian Geometry (Ellis Harwood, Chichester, 1982). 
116] V.V. Nesterenko, Curvature and torsion of the word curve in the action of the relativistic particle, 

J. Math. Phys. 32 (1991) 3315-3320. 
117] T. Dereli, D.H. Hartley, M. Onder and R.W. Tucker, Relativistic elastica, Phys. Lett. B 252 (1990) 

601-604. 
[ 18] Y. Ohnuki and S. Kitakado, On quantum mechanics on compact space, Mod. Phys. Lett. A 7 (1992) 

2477 -2482. 
[ 19] A. Kholodenko, Fermi-Bose transmutation: from semiflexible polymers to superstrings, Ann. Phys. 202 

(1990) 186-225. 



26 A.L. Kholodenko, V.V. Nesterenko/Journal of Geometry and Physics 16 (1995) 15-26 

[20] T. Jaroszewich and P. Kurzepa, Polyakov spin factors and laplacians on homogenous spaces, Ann. Phys. 
213 (1992) 135-165. 

[21 ] A. Bobenko, All constant mean curvature tori in R 3, S 3, H 3 in terms of theta-functions, Math. Annalen 
290 (1991) 209-245. 

[22] R. Walter, Constant mean curvature tori with spherical curvature lines in noneuclidean geometry, 
Manuscr. Math. 63 (1989) 343-363. 

[23] C. Callan and E Wilczek, Infrared behavior at negative curvature, Nucl. Phys. B 340 (1990) 366-386. 
[24] L.P. Eisenhart, Riemannian Geometry (Princeton University Press, Princeton, 1964) 
[251 A. Lichnerowicz, TMorie Globale des Connexions et des Groupes d'Holonomie (Edizioni Cremonese, 

Rome, 1955). 
[26] B. Chen, Total Mean Curvature and Submanifolds of Finite Type (World Scientific, Singapore, 1990). 
[27] B.M. Barbashov and V.V. Nesterenko, Relativistic string model in space-time of a constant curvature, 

Commun. Math. Phys. 78 ( 1981 ) 499-506. 
[28] T.J. Willmore and C.S. Jhaveri, An extension of a result of Bang-Yen Chen, Quarterly J. Mathematics 

23 (1972) 319-323. 
[29] J.L. Weiner, On the problem of Chen, Willmore, et al., Indiana University Mathematics Journal 27 

(1978) 19-35. 
[30] D.H. Hartley and R.W. Tucker, in: Geometry of Low-Dimensional Manifolds, Vol. 1 (Cambridge 

University Press, Cambridge, 1990) p. 207. 
[ 31 ] H. Kleinert, Thermal deeonfinement transition for spontaneous strings, Phys. Lett. B 189 (1987) 187- 

190. 
[32] H. De Vega and N. Sanchez, Exact integrability of strings in D-dimensional de Sitter spacetime, Phys. 

Rev. D 47 (1993) 3394-3404. 
[33] P.A. Griffith, Exterior Differential Systems and the Calculus of Variations (Birkh~iuser, Boston, 1983). 
[34] J. Langer and D.A. Singer, Knotted elastic curves in R 3, J. London Math. Soc. 30 (1984) 512-520; 

The total squared curvature of closed curves, J. Diff. Geom. 20 (1984) 1-22. 


